Petri Nets with Catalysts

John Baez John Foley Joe Moeller*

University of California, Riverside Metron Scientific Solutions

This work was produced in part on occupied Cahuilla and Tongva land.

Applied Category Theory 6 July 2020

Petri Nets

▶ resources: \bigcirc e.g. H₂O

▶ processes: □ e.g. a reaction

Markings

- ▶ resources: \bigcirc e.g. H_2O
- \blacktriangleright tokens: e.g. a molecule of H_2O

2A + 1B

Executions

Executions

Executions

$2A + 1B \xrightarrow{\tau_1} 1A + 1C$

Sequential Execution

Sequential Execution

Sequential Execution

$2A + 1B \xrightarrow{\tau_1} 1A + 1C \xrightarrow{\tau_2} 1A + 2B$

Definition

For a Petri net P, define a category FP where

- an object is a marking
- a morphism is a sequence of executions
- composition is given by concatenation.

Concurrent Execution

Concurrent Execution

 $1A + 1B + 1C \xrightarrow{\tau_1 + \tau_2} 2B + 1C$

Concurrent Execution

$1A + 1B + 1C \xrightarrow{\tau_1 + \tau_2} 2B + 1C$

Definition

Give FP a (commutative) monoidal structure + as above.

String Diagrams

String Diagrams

A morphism in *FP*:

Definition

A **catalyst** in a Petri net is a resource whose in-degree and out-degree relative to each transition are equal.

A B B

C A A

Proposition (Baez, Foley, M)

For a Petri net P with catalysts, as categories we get

$$FP = \coprod_{c \in \text{Catalysts}} FP_c.$$

In particular, this gives a monoidal opfibration $FP \to \mathbb{N}[C]$.

Theorem

The Grothendieck construction gives a 2-equivalence:

 $\mathsf{Fib}(\mathcal{X}) \cong \mathsf{ICat}(\mathcal{X})$

Monoidal Grothendieck Construction

Theorem (Shulman; Vasilakopoulou, M)

If X is (co)cartesian monoidal, then monoidal (op)fibrations over X are equivalent to X-(op)indexed monoidal categories.

Not monoidal subcategories

 FP_{1A} is not closed under +:

but not a cocartesian base...

Structure on fibres

We should be reusing the catalyst! In FP_{1A} :

Structure on fibres

We should be reusing the catalyst! In FP_{1A} :

This is only PREmonoidal though

► FP is monoidally opfibred over N[C]:
↓
N[C]

inverse monoidal Grothendieck construction to get an indexed category:

 $\mathbb{N}[\mathcal{C}] \to \mathsf{Cat}$

FD

inverse monoidal Grothendieck construction to get an indexed category:

 $\mathbb{N}[C] \to \mathsf{Cat}$

ED

• Let S[C] denote the free symmetric monoidal category on C

 $S[C] \rightarrow \mathbb{N}[C]$

inverse monoidal Grothendieck construction to get an indexed category:

$$\mathbb{N}[C] \to \mathsf{Cat}$$

ED

• Let S[C] denote the free symmetric monoidal category on C

$$S[C] \to \mathbb{N}[C] \xrightarrow{p} Cat$$

Theorem (Baez, Foley, M.)

The global monoidal indexed category $G: S(C) \rightarrow Cat$ lifts to a functor $\hat{G}: S(C) \rightarrow PreMonCat$:

monoidal functor

$$S[C] \xrightarrow{\hat{G}} PreMonCat$$

- monoidal Grothendieck construction gives a monoidal category
 - objects = same objects as FP, markings
 - morphisms = sequential executions + permutations of catalyst tokens

tensor = concurrent execution + permutation sum

this gives a variant of the category *FP* which models individual token philosophy on the catalyst tokens, and collective token philosophy on all others

Future

applications to queueing theory

- applications to queueing theory
- Petri nets with guards

Future

- applications to queueing theory
- Petri nets with guards
- model individual token philosophy by mimicking the usual theory, but over a cocartesian base

Future

- applications to queueing theory
- Petri nets with guards
- model individual token philosophy by mimicking the usual theory, but over a cocartesian base
- what about other fibrations of FP?

John C. Baez, John Foley, and Joe Moeller. Network models from petri nets with catalysts. Compositionality, 1(4), 2019.

- - J. C. Baez, J. Foley, J. Moeller, and B. S. Pollard. Network models.

Theory and Applications of Categories, 35(20):700–744, 2020. Available at http://www.tac.mta.ca/tac/volumes/35/20/35-20abs.html.

- John C. Baez and Jade Master.
 - Open Petri nets.

Mathematical Structures in Computer Science, 30:314–341, 2020.

Joe Moeller and Christina Vasilakopoulou. Monoidal Grothendieck construction. arXiv:1809.00727 [math.CT], 2019.