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Petri Nets

> resources: O e.g. H,O

P processes: [ e.g. a reaction
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Markings

> resources: O e.g. H,O

» processes: [ e.g. a reaction

> tokens: e e.g. a molecule of HoO
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Sequential Execution
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Sequential Execution
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Definition

For a Petri net P, define a category FP where

» an object is a marking

» a morphism is a sequence of executions

» composition is given by concatenation.



Concurrent Execution
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Concurrent Execution
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Concurrent Execution
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Definition

Give FP a (commutative) monoidal structure + as above.



String Diagrams
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String Diagrams

A morphism in FP:




Catalysts

Definition
A catalyst in a Petri net is a resource whose in-degree and
out-degree relative to each transition are equal.
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Catalysts
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Catalysts
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Proposition (Baez, Foley, M)

For a Petri net P with catalysts, as categories we get

FP= ][] FP-

ceCatalysts

In particular, this gives a monoidal opfibration FP — N[C].



Theorem

The Grothendieck construction gives a 2-equivalence:

Fib(X) = ICat(X)




Monoidal Grothendieck Construction

Theorem (Shulman; Vasilakopoulou, M)

If X is (co)cartesian monoidal, then monoidal (op)fibrations over
X are equivalent to X-(op)indexed monoidal categories.




Not monoidal subcategories

FP; 4 is not closed under +:
A B A D A B A D
c A E A cC A E A

FP
We have a monoidal opfibration l

N[C]
but not a cocartesian base. ..



Structure on fibres

We should be reusing the catalyst! In FPjx:

A B A D A
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Structure on fibres

We should be reusing the catalyst! In FPjx:

A B A D A
@14 -
c A E A

This is only PREmonoidal though

B D
c E



Network Models

FP
» FP is monoidally opfibred over N[C]: l

N[C]
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Network Models

FP
» FP is monoidally opfibred over N[C]: i
N[C]
» inverse monoidal Grothendieck construction to get an indexed

category:
N[C] — Cat

» Let S[C] denote the free symmetric monoidal category on C

S[C] — N[C] & Cat



Theorem (Baez, Foley, M.)

The global monoidal indexed category G: S(C) — Cat lifts to a
functor G: S(C) — PreMonCat:

PreMonCat

/l

e Cat



Network Models

» monoidal functor

S[C] ©, PreMonCat

» monoidal Grothendieck construction gives a monoidal

category

P objects = same objects as FP, markings

» morphisms = sequential executions + permutations of catalyst

tokens

P tensor = concurrent execution + permutation sum
this gives a variant of the category FP which models
individual token philosophy on the catalyst tokens, and
collective token philosophy on all others



Future

P applications to queueing theory
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Future

» applications to queueing theory

» Petri nets with guards
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Future

> applications to queueing theory
» Petri nets with guards

» model individual token philosophy by mimicking the usual
theory, but over a cocartesian base



Future

> applications to queueing theory

v

Petri nets with guards

» model individual token philosophy by mimicking the usual
theory, but over a cocartesian base

» what about other fibrations of FP?
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