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Petri Nets

I resources: e.g. H2O

I processes: e.g. a reaction
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Markings

I resources: e.g. H2O

I processes: e.g. a reaction

I tokens: • e.g. a molecule of H2O
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Definition

For a Petri net P, define a category FP where

I an object is a marking

I a morphism is a sequence of executions

I composition is given by concatenation.
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Definition

Give FP a (commutative) monoidal structure + as above.
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String Diagrams
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String Diagrams

A morphism in FP:

A A B A A
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Catalysts

Definition

A catalyst in a Petri net is a resource whose in-degree and
out-degree relative to each transition are equal.
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Proposition (Baez, Foley, M)

For a Petri net P with catalysts, as categories we get

FP =
∐

c∈Catalysts

FPc .

In particular, this gives a monoidal opfibration FP → N[C ].
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Theorem

The Grothendieck construction gives a 2-equivalence:

Fib(X ) ∼= ICat(X )

P F



Monoidal Grothendieck Construction

Theorem (Shulman; Vasilakopoulou, M)

If X is (co)cartesian monoidal, then monoidal (op)fibrations over
X are equivalent to X -(op)indexed monoidal categories.

P
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Not monoidal subcategories

FP1A is not closed under +:
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We have a monoidal opfibration

FP

N[C ]

but not a cocartesian base. . .



Structure on fibres

We should be reusing the catalyst! In FP1A:
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Network Models

I FP is monoidally opfibred over N[C ]:

FP

N[C ]

I inverse monoidal Grothendieck construction to get an indexed
category:

N[C ]→ Cat

I Let S[C ] denote the free symmetric monoidal category on C

S[C ]→ N[C ]
p−→ Cat
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Theorem (Baez, Foley, M.)

The global monoidal indexed category G : S(C )→ Cat lifts to a
functor Ĝ : S(C )→ PreMonCat:

PreMonCat

S(C ) Cat

U

G

Ĝ



Network Models

I monoidal functor

S[C ]
Ĝ−→ PreMonCat

I monoidal Grothendieck construction gives a monoidal
category
I objects = same objects as FP, markings
I morphisms = sequential executions + permutations of catalyst

tokens
I tensor = concurrent execution + permutation sum

this gives a variant of the category FP which models
individual token philosophy on the catalyst tokens, and
collective token philosophy on all others



Future

I applications to queueing theory
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