The Grothendieck construction and structured categories

Joe Moeller joint with Christina Vasilakopoulou

University of California, Riverside

MIT Categories Seminar 23 April 2020

 $k \in \mathsf{Ring} \leadsto \mathsf{Mod}_k \in \mathsf{Cat}$

 $k \in \mathsf{Ring} \leadsto \mathsf{Mod}_k \in \mathsf{Cat}$

Mod_{all}???

Grothendieck: Yes!

- ▶ objects (k, M), where $M \in Mod_k$
- ▶ maps (f,g): $(k,M) \rightarrow (k',M')$ where $f: k \rightarrow k'$ and
 - $g:M \to f^*(M')$

 $k \in \mathsf{Ring} \leadsto \mathsf{Mod}_k \in \mathsf{Cat}$

 $k \in \mathsf{Ring} \leadsto \mathsf{Mod}_k \in \mathsf{Cat}$

 $\mathsf{Mod} \colon \mathsf{Ring} \to \mathsf{Cat} ? ? ?$

$$k \in \mathsf{Ring} \leadsto \mathsf{Mod}_k \in \mathsf{Cat}$$

$$\mathsf{Mod} \colon \mathsf{Ring} \to \mathsf{Cat} ? ? ?$$

$$f: k \to k'$$

$$k \in \mathsf{Ring} \leadsto \mathsf{Mod}_k \in \mathsf{Cat}$$

 $\mathsf{Mod} \colon \mathsf{Ring} \to \mathsf{Cat} \ref{eq:continuous}$

 $f \colon k \to k' \leadsto f^* \colon \mathsf{Mod}_{k'} \to \mathsf{Mod}_k$

$$k \in \mathsf{Ring} \leadsto \mathsf{Mod}_k \in \mathsf{Cat}$$

 $\mathsf{Mod}\colon \mathsf{Ring}^{op}\to \mathsf{Cat}$

 $f \colon k \to k' \leadsto f^* \colon \mathsf{Mod}_{k'} \to \mathsf{Mod}_k$

Given

$$\mathsf{Mod}\colon \mathsf{Ring}^{\mathrm{op}}\to \mathsf{Cat}$$

we defined Mod_{all} to have

- ▶ objects (k, M), where $M \in Mod_k$
- maps $(f,g): (k,M) \rightarrow (k',M')$ where $f: k \rightarrow k'$ and $g: M \rightarrow f^*(M')$

Given

$$\mathsf{Mod} \colon \mathsf{Ring}^{\mathrm{op}} \to \mathsf{Cat}$$

we defined Mod_{all} to have

- ▶ objects (k, M), where $M \in Mod_k$
- maps $(f,g)\colon (k,M) \to (k',M')$ where $f\colon k \to k'$ and $g\colon M \to f^*(M')$

Given

$$\mathcal{F} \colon \mathcal{X}^{\mathrm{op}} o \mathsf{Cat}$$

we define $\int \mathcal{F}$ to have

- ▶ objects (x, a), where $x \in \mathcal{X}$, $a \in \mathcal{F}(x)$
- maps $(f,g): (x,a) \rightarrow (x',a')$ where $f: x \rightarrow x'$ and $g: a \rightarrow \mathcal{F}f(a')$

Indexed Categories

2-category ICat:

objects: (pseudo)functors

$$F \colon \mathcal{X}^{\mathrm{op}} \to \mathsf{Cat}$$

▶ 1-morphisms: (pseudo)natural transformations

▶ 2-morphisms: suitable modifications

Example: Rings and Modules

A ring homomorphism $f: k \to k'$ induces a functor

$$f^* \colon \mathsf{Mod}_{k'} \to \mathsf{Mod}_k$$

given by $f^*(M) = M$ but with the k-action defined by

$$r.m = f(r).m$$

for $r \in k$, and

$$f^*(g) = g$$

This gives a functor Mod: Ring^{op} \rightarrow Cat sending a ring to its category of modules and a morphism f to Mod $_f = f^*$.

Given an action of a group G on a group H

$$A: G \rightarrow Aut(H)$$

you can think of it as a functor of the form

$$G \xrightarrow{A} \mathsf{Grp} \hookrightarrow \mathsf{Cat}$$

$$* \mapsto H$$

 $\int A$ has:

Given an action of a group G on a group H

$$A \colon G \to \operatorname{Aut}(H)$$

you can think of it as a functor of the form

$$G \xrightarrow{A} \mathsf{Grp} \hookrightarrow \mathsf{Cat}$$

$$*\mapsto H$$

 $\int A$ has:

▶ a single object: (*,*)

Given an action of a group G on a group H

$$A \colon G \to \operatorname{Aut}(H)$$

you can think of it as a functor of the form

$$G \xrightarrow{A} \mathsf{Grp} \hookrightarrow \mathsf{Cat}$$

$$*\mapsto H$$

∫A has:

- ▶ a single object: (*,*)
- ▶ morphisms: (g, h) with $g \in G$, $h \in H$

Given an action of a group G on a group H

$$A \colon G \to \operatorname{Aut}(H)$$

you can think of it as a functor of the form

$$G \xrightarrow{A} \mathsf{Grp} \hookrightarrow \mathsf{Cat}$$

$$*\mapsto H$$

 $\int A$ has:

- ➤ a single object: (*,*)
- ▶ morphisms: (g, h) with $g \in G$, $h \in H$
- $(g,h)\circ (g',h')=(g\circ g',h\circ g.h')$

So $\int A = H \rtimes G$, the semidirect product!

2-functor $\int \colon \mathsf{ICat} \to \mathsf{Cat}$

 \triangleright it remembers all the objects and maps in each Fx

- it remembers all the objects and maps in each Fx
- it throws in extra maps representing what the functors Ff do

- \triangleright it remembers all the objects and maps in each Fx
- it throws in extra maps representing what the functors Ff do
- it forgets which maps came from categories or functors

- \triangleright it remembers all the objects and maps in each Fx
- it throws in extra maps representing what the functors Ff do
- it forgets which maps came from categories or functors
- ► We can do better!

cartesian lift

pullback

reindexing functor

$$P^{-1}y \xrightarrow{f^*} P^{-1}x$$

Fibrations

2-category Fib:

- ightharpoonup objects: fibrations $P \colon \mathcal{A} \to \mathcal{X}$
- ▶ 1-morphisms: commuting square, ϕ_t preserves cartesian morphisms

$$\begin{array}{ccc} \mathcal{A} & \stackrel{\phi_t}{\longrightarrow} & \mathcal{B} \\ P \downarrow & & \downarrow Q \\ \mathcal{X} & \stackrel{\phi_b}{\longrightarrow} & \mathcal{Y} \end{array}$$

2-morphisms: suitable natural transformations

Let Grph denote the category of directed multi-graphs, each represented by a function $E \to V \times V$. Define the vertex functor

Vert: Grph \rightarrow Set

by sending a graph to its set of vertices, and a map of graphs to its vertex component. *Vert* is a fibration.

The Grothendieck Construction

Given

$$F \colon \mathcal{X}^{\mathrm{op}} \to \mathsf{Cat}$$

we define $\int F$ to have

- ▶ objects (x, a), where $x \in \mathcal{X}$, $a \in F(x)$
- maps $(f,g): (x,a) \rightarrow (x',a')$ where $f: x \rightarrow x'$ and $g: a \rightarrow Ff(a')$

The Grothendieck Construction

Given

$$F \colon \mathcal{X}^{\mathrm{op}} \to \mathsf{Cat}$$

we define $\int F$ to have

- ▶ objects (x, a), where $x \in \mathcal{X}$, $a \in F(x)$
- maps $(f,g): (x,a) \rightarrow (x',a')$ where $f: x \rightarrow x'$ and $g: a \rightarrow Ff(a')$

For $F \colon \mathcal{X}^{\mathrm{op}} \to \mathsf{Cat}, \ \int F$ is naturally fibred over \mathcal{X} :

$$P_F \colon \int F \to \mathcal{X}$$

 $(x, a) \mapsto x$
 $(f, k) \mapsto f$

2-Equivalence

Theorem

The Grothendieck construction gives a 2-equivalence:

 $\mathsf{ICat} \cong \mathsf{Fib}$

The fibration

$$Vert : \mathsf{Grph} \to \mathsf{Set}$$

corresponds to the indexed category

$$\mathsf{Grph}_-\colon \mathsf{Set}^\mathrm{op}\to \mathsf{Cat}$$

where $Grph_X$ is the category where

- the objects are graphs with fixed vertex set X
- ▶ the morphisms are map of graphs which fix the vertices.

Fixed-base Indexed Categories

2-category ICat(X):

- ▶ objects: (pseudo)functors $F: \mathcal{X}^{\mathrm{op}} \to \mathsf{Cat}$
- ▶ 1-morphisms:

$$\mathcal{X}^{\mathrm{op}} \underbrace{ \stackrel{F}{\biguplus} \alpha}_{G} \mathsf{Cat}$$

2-morphisms: suitable modifications

Fixed-base Fibrations

2-category Fib(X):

- object
 - $P \colon \mathcal{A} \to \mathcal{X}$
- ▶ 1-morphism

▶ 2-morphisms: suitable natural transformations

2-Equivalence for Fixed-base

Theorem

For a category X, the Grothendieck construction gives a 2-equivalence:

$$\mathsf{ICat}(\mathcal{X}) \cong \mathsf{Fib}(\mathcal{X})$$

Fibre-wise Monoidal Indexed Categories

Definition 1

A **fibre-wise monoidal indexed category** is a pseudofunctor $F \colon \mathcal{X}^{\mathrm{op}} \to \mathsf{MonCat}_s$. Let $f\mathsf{MonICat}(\mathcal{X})$ denote the 2-category of fibre-wise monoidal indexed categories

Fibre-wise Monoidal Fibrations

Definition 2

A (fibre-wise) monoidal fibration is

- ▶ fibration $P: A \to X$
- \blacktriangleright the fibres \mathcal{A}_{\times} are monoidal
- the reindexing functors are monoidal

Let fMonFib(\mathcal{X}) denote the 2-category of fibre-wise monoidal fibrations.

Fibre-wise Monoidal Grothendieck Construction

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to a 2-equivalence:

f MonFib $(\mathcal{X}) \simeq f$ MonICat (\mathcal{X})

Global Monoidal Indexed Categories

Definition 3

A (global) monoidal indexed category is

- ▶ an indexed category $F: \mathcal{X}^{\mathrm{op}} \to \mathsf{Cat}$
- $\triangleright \mathcal{X}$ is monoidal
- ightharpoonup F is lax monoidal $(F,\phi)\colon (\mathcal{X}^{\mathrm{op}},\otimes) o (\mathsf{Cat}, imes)$

Let gMonlCat denote the 2-category of global monoidal indexed categories.

Global Monoidal Fibrations

Definition 4

A **(global) monoidal fibration** is a fibration $P \colon \mathcal{A} \to \mathcal{X}$

- $ightharpoonup \mathcal{A}$ and \mathcal{X} are monoidal
- P is a strict monoidal functor
- $ightharpoonup \otimes_{\mathcal{A}}$ preserves cartesian liftings.

Let gMonFib (\mathcal{X}) denote the 2-category of global monoidal fibrations.

Global Monoidal Grothendieck Construction

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to an equivalence:

 $g\mathsf{MonFib}(\mathcal{X})\simeq g\mathsf{MonICat}(\mathcal{X})$

Monoidal structure on the total category

Given a lax monoidal functor

$$(F,\phi)$$
: $(\mathcal{X}^{\mathrm{op}},\otimes) \to (\mathsf{Cat},\times)$
 $\phi \colon Fx \times Fy \to F(x \otimes y)$

$$(x,a)\otimes(y,b)=$$

Monoidal structure on the total category

Given a lax monoidal functor

$$(F,\phi)$$
: $(\mathcal{X}^{\mathrm{op}},\otimes) \to (\mathsf{Cat},\times)$

$$\phi\colon Fx\times Fy\to F(x\otimes y)$$

$$(x,a)\otimes(y,b)=(x\otimes y,$$

Monoidal structure on the total category

Given a lax monoidal functor

$$(F,\phi)\colon (\mathcal{X}^{\mathrm{op}},\otimes) \to (\mathsf{Cat},\times)$$

$$\phi \colon \mathit{Fx} \times \mathit{Fy} \to \mathit{F}(x \otimes y)$$

$$(x,a)\otimes(y,b)=(x\otimes y,\phi_{x,y}(a,b))$$

Cartesian Case

Theorem (Vasilakopoulou, M)

If X is a cartesian monoidal category, then

Dually, if X is cocartesian, then

$$\begin{array}{ccc} g\mathsf{MonOpFib}(\mathcal{X}) & \stackrel{\simeq}{\longrightarrow} & g\mathsf{MonOplCat}(\mathcal{X}) \\ & & & & \downarrow \bowtie & & \downarrow \bowtie \\ f\mathsf{MonOpFib}(\mathcal{X}) & \stackrel{\simeq}{\longrightarrow} & f\mathsf{MonOplCat}(\mathcal{X}) \end{array}$$

$g\mathsf{MonlCat}(\mathcal{X}) o f\mathsf{MonlCat}(\mathcal{X})$

Given (F, ϕ) : $(X, \times)^{op} \to (Cat, \times)$ define \otimes_x : $Fx \times Fx \to Fx$ by

$$Fx \times Fx \xrightarrow{\otimes_x} Fx$$

$$F(x \times x)$$

$f\mathsf{MonlCat}(\mathcal{X}) o g\mathsf{MonlCat}(\mathcal{X})$

Given $F: X^{\mathrm{op}} \to \mathsf{MonCat}$ define $\phi_{\mathsf{x},\mathsf{y}} \colon \mathsf{Fx} \times \mathsf{Fy} \to \mathsf{F}(\mathsf{x} \times \mathsf{y})$ by

$$Fx \times Fy \xrightarrow{\phi_{x,y}} F(x \times y)$$

$$F(x \times y) \times F(x \times y)$$

Example: Graphs

(cocartesian) monoidal structure on Grph(X) given by

Example: Graphs

(cocartesian) monoidal structure on Grph(X) given by

Then we can define a lax monoidal structure on $\operatorname{Grph}(-)\colon\operatorname{Set}\to\operatorname{Cat}$ by

$$\mathsf{Grph}(X) \times \mathsf{Grph}(Y) \xrightarrow{+} \mathsf{Grph}(X+Y)$$
 $\downarrow i_* \times j_* \qquad \qquad \downarrow + \downarrow X+Y \qquad \qquad \downarrow + \downarrow X+Y$

Constructing network operads

Graphs can be combined to create bigger graphs by identifying some of the vertices

We choose to examine these as combinations of a few simpler operations

We want to construct an operad that captures these operations

Simple graphs, as a symmetric lax monoidal functor:

$$(\mathit{SG},\sqcup)\colon (\mathsf{FinBij},+)\to (\mathsf{Mon},\times)$$

 $ightharpoonup \mathrm{SG}(n)$ simple graphs with vertex set n

Simple graphs, as a symmetric lax monoidal functor:

$$(SG, \sqcup) \colon (\mathsf{FinBij}, +) \to (\mathsf{Mon}, \times)$$

- $ightharpoonup \mathrm{SG}(n)$ simple graphs with vertex set n
- ightharpoonup symmetric group S_n acts on SG(n) by permuting vertices

Simple graphs, as a symmetric lax monoidal functor:

$$(SG, \sqcup) \colon (\mathsf{FinBij}, +) \to (\mathsf{Mon}, \times)$$

- $ightharpoonup \mathrm{SG}(n)$ simple graphs with vertex set n
- ightharpoonup symmetric group S_n acts on SG(n) by permuting vertices
- ▶ monoid operation \cup : $SG(n) \times SG(n) \to SG(n)$ given by "overlaying" two graphs

Simple graphs, as a symmetric lax monoidal functor:

$$(\mathit{SG},\sqcup)\colon (\mathsf{FinBij},+)\to (\mathsf{Mon},\times)$$

- $ightharpoonup \mathrm{SG}(n)$ simple graphs with vertex set n
- **>** symmetric group S_n acts on SG(n) by permuting vertices
- ▶ monoid operation \cup : $SG(n) \times SG(n) \to SG(n)$ given by "overlaying" two graphs
- ▶ lax structure \sqcup : $SG(n) \times SG(m) \rightarrow SG(n+m)$

A network model is a symmetric lax monoidal functor

$$(F,\phi)$$
: (FinBij, +) \rightarrow (Mon, \times) \hookrightarrow (Cat, \times)

Examples:

- Multigraphs
- Directed Graphs
- Partitions
- Graphs with colored vertices
- Petri Nets
- Graphs with edges weighted by a monoid

$\mathsf{NetMod} \xrightarrow{\int} \mathsf{SymMonCat} \xrightarrow{\mathit{op}} \mathsf{Operad}$

The critical difference between ICat and ICat(\mathcal{X})

products in ICat:

$$F \colon \mathcal{X}^{\mathrm{op}} \to \mathsf{Cat}$$
 $G \colon \mathcal{Y}^{\mathrm{op}} \to \mathsf{Cat}$

$$G: \mathcal{Y} \to \mathsf{Cat}$$

$$\mathcal{X}^{\mathrm{op}} \times \mathcal{Y}^{\mathrm{op}} \xrightarrow{F \times G} \mathsf{Cat} \times \mathsf{Cat} \xrightarrow{\times} \mathsf{Cat}$$

The critical difference between ICat and ICat(\mathcal{X})

products in ICat:

$$F \colon \mathcal{X}^{\mathrm{op}} \to \mathsf{Cat}$$
 $G \colon \mathcal{Y}^{\mathrm{op}} \to \mathsf{Cat}$

$$\mathcal{X}^{\mathrm{op}} \times \mathcal{Y}^{\mathrm{op}} \xrightarrow{F \times G} \mathsf{Cat} \times \mathsf{Cat} \xrightarrow{\times} \mathsf{Cat}$$

products in ICat(X):

$$F,G\colon \mathcal{X}^{\mathrm{op}} o \mathsf{Cat}$$

$$\mathcal{X}^{\mathrm{op}} \xrightarrow{\Delta} \mathcal{X}^{\mathrm{op}} \times \mathcal{X}^{\mathrm{op}} \xrightarrow{F \times G} \mathsf{Cat} \times \mathsf{Cat} \xrightarrow{\times} \mathsf{Cat}$$

The proof

We wrote the definitions so that

- ▶ fMonlCat(\mathcal{X}) \cong PsMon(lCat(\mathcal{X})).
- ▶ fMonFib(\mathcal{X}) \cong PsMon(Fib(\mathcal{X})).
- $ightharpoonup gMonlCat \cong PsMon(lCat).$
- ▶ gMonFib \cong PsMon(Fib).

If $A \cong B$, then $PsMon(A, \times) \cong PsMon(B, \times)$.

Braided and Symmetric

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to equivalences:

$$g\mathsf{BrMonFib}(\mathcal{X})\simeq g\mathsf{BrMonICat}(\mathcal{X})$$

$$f$$
BrMonFib $(\mathcal{X}) \simeq f$ BrMonICat (\mathcal{X})

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to an equivalence:

$$g\mathsf{SymMonFib}(\mathcal{X})\simeq g\mathsf{SymMonICat}(\mathcal{X})$$

$$f\mathsf{SymMonFib}(\mathcal{X})\simeq f\mathsf{SymMonICat}(\mathcal{X})$$

John Baez, John Foley, Joseph Moeller, and Blake Pollard. Network models.

arXiv:1711.00037 [math.CT], 2017.

Joe Moeller and Christina Vasilakopoulou.

Monoidal Grothendieck construction. arXiv:1809.00272 [math.CT], 2019.

Michael Shulman. Framed bicategories and monoidal fibrations.

Theory Appl. Categ., 20:No. 18, 650–738, 2008.