The Grothendieck construction and structured categories

Joe Moeller
joint with Christina Vasilakopoulou
University of California, Riverside

MIT Categories Seminar 23 April 2020

Motivation

$$
k \in \operatorname{Ring} \rightsquigarrow \operatorname{Mod}_{k} \in \text { Cat }
$$

Motivation

$$
k \in \operatorname{Ring} \rightsquigarrow \operatorname{Mod}_{k} \in \text { Cat }
$$

Modall $^{\text {? ? ? }}$

Motivation

Grothendieck: Yes!

- objects (k, M), where $M \in \operatorname{Mod}_{k}$
$-\operatorname{maps}(f, g):(k, M) \rightarrow\left(k^{\prime}, M^{\prime}\right)$ where $f: k \rightarrow k^{\prime}$ and $g: M \rightarrow f^{*}\left(M^{\prime}\right)$

Motivation

$$
k \in \text { Ring } \rightsquigarrow \operatorname{Mod}_{k} \in \text { Cat }
$$

Motivation

$$
k \in \text { Ring } \rightsquigarrow \operatorname{Mod}_{k} \in \text { Cat }
$$

Mod: Ring \rightarrow Cat???

Motivation

$$
k \in \text { Ring } \rightsquigarrow \operatorname{Mod}_{k} \in \text { Cat }
$$

Mod: Ring \rightarrow Cat???

$$
f: k \rightarrow k^{\prime}
$$

Motivation

$$
k \in \operatorname{Ring} \rightsquigarrow \operatorname{Mod}_{k} \in \text { Cat }
$$

Mod: Ring \rightarrow Cat???

$$
f: k \rightarrow k^{\prime} \rightsquigarrow f^{*}: \operatorname{Mod}_{k^{\prime}} \rightarrow \operatorname{Mod}_{k}
$$

Motivation

$$
k \in \text { Ring } \rightsquigarrow \operatorname{Mod}_{k} \in \text { Cat }
$$

Mod: Ring ${ }^{\text {op }} \rightarrow$ Cat

$$
f: k \rightarrow k^{\prime} \rightsquigarrow f^{*}: \operatorname{Mod}_{k^{\prime}} \rightarrow \operatorname{Mod}_{k}
$$

Motivation

Given
Mod: Ring ${ }^{\text {op }} \rightarrow$ Cat
we defined $\operatorname{Mod}_{\text {all }}$ to have

- objects (k, M), where $M \in \operatorname{Mod}_{k}$
- maps
$(f, g):(k, M) \rightarrow\left(k^{\prime}, M^{\prime}\right)$
where $f: k \rightarrow k^{\prime}$ and
$g: M \rightarrow f^{*}\left(M^{\prime}\right)$

Motivation

Given
Mod: Ring ${ }^{\text {op }} \rightarrow$ Cat
we defined Mod $_{\text {all }}$ to have

- objects (k, M), where $M \in \operatorname{Mod}_{k}$
- maps
$(f, g):(k, M) \rightarrow\left(k^{\prime}, M^{\prime}\right)$ where $f: k \rightarrow k^{\prime}$ and $g: M \rightarrow f^{*}\left(M^{\prime}\right)$

Given

$$
\mathcal{F}: \mathcal{X}^{\mathrm{op}} \rightarrow \text { Cat }
$$

we define $\int \mathcal{F}$ to have

- objects (x, a), where $x \in \mathcal{X}$, $a \in \mathcal{F}(x)$
- maps

$$
(f, g):(x, a) \rightarrow\left(x^{\prime}, a^{\prime}\right)
$$

where $f: x \rightarrow x^{\prime}$ and $g: a \rightarrow \mathcal{F} f\left(a^{\prime}\right)$

Indexed Categories

2-category ICat:

- objects: (pseudo)functors

$$
F: \mathcal{X}^{\mathrm{op}} \rightarrow \text { Cat }
$$

- 1-morphisms: (pseudo)natural transformations

- 2-morphisms: suitable modifications

Example: Rings and Modules

A ring homomorphism $f: k \rightarrow k^{\prime}$ induces a functor

$$
f^{*}: \operatorname{Mod}_{k^{\prime}} \rightarrow \operatorname{Mod}_{k}
$$

given by $f^{*}(M)=M$ but with the k-action defined by

$$
r \cdot m=f(r) \cdot m
$$

for $r \in k$, and

$$
f^{*}(g)=g
$$

This gives a functor Mod: Ring ${ }^{\mathrm{op}} \rightarrow$ Cat sending a ring to its category of modules and a morphism f to $\operatorname{Mod}_{f}=f^{*}$.

Example: semidirect product

Given an action of a group G on a group H

$$
A: G \rightarrow \operatorname{Aut}(H)
$$

you can think of it as a functor of the form

$$
\begin{aligned}
& G \xrightarrow{A} \text { Grp } \hookrightarrow \text { Cat } \\
& * \mapsto H
\end{aligned}
$$

$\int A$ has:

Example: semidirect product

Given an action of a group G on a group H

$$
A: G \rightarrow \operatorname{Aut}(H)
$$

you can think of it as a functor of the form

$$
\begin{aligned}
& G \xrightarrow{A} \text { Grp } \hookrightarrow \text { Cat } \\
& * \mapsto H
\end{aligned}
$$

$\int A$ has:

- a single object: $(*, *)$

Example: semidirect product

Given an action of a group G on a group H

$$
A: G \rightarrow \operatorname{Aut}(H)
$$

you can think of it as a functor of the form

$$
\begin{gathered}
G \xrightarrow{A} \text { Grp Cat } \\
* \mapsto H
\end{gathered}
$$

$\int A$ has:

- a single object: $(*, *)$
- morphisms: (g, h) with $g \in G, h \in H$

Example: semidirect product

Given an action of a group G on a group H

$$
A: G \rightarrow \operatorname{Aut}(H)
$$

you can think of it as a functor of the form

$$
\begin{gathered}
G \xrightarrow{A} \text { Grp Cat } \\
* \mapsto H
\end{gathered}
$$

$\int A$ has:

- a single object: $(*, *)$
- morphisms: (g, h) with $g \in G, h \in H$
- $(g, h) \circ\left(g^{\prime}, h^{\prime}\right)=\left(g \circ g^{\prime}, h \circ g . h^{\prime}\right)$

So $\int A=H \rtimes G$, the semidirect product!

2-functor $\int:$ ICat \rightarrow Cat

2-functor $\int:$ ICat \rightarrow Cat

- it remembers all the objects and maps in each F_{X}

2-functor $\int:$ ICat \rightarrow Cat

- it remembers all the objects and maps in each F_{X}
- it throws in extra maps representing what the functors Ff do

2-functor $\int:$ ICat \rightarrow Cat

- it remembers all the objects and maps in each F_{X}
- it throws in extra maps representing what the functors Ff do
- it forgets which maps came from categories or functors

2-functor $\int:$ ICat \rightarrow Cat

- it remembers all the objects and maps in each F_{X}
- it throws in extra maps representing what the functors Ff do
- it forgets which maps came from categories or functors
- We can do better!

Grothendieck Fibrations

Grothendieck Fibrations

cartesian lift

$$
\begin{array}{cc}
\mathcal{A} & a \xrightarrow{\phi} b \\
P \mid & \\
\mathcal{X} & x \xrightarrow{f} y
\end{array}
$$

Grothendieck Fibrations

pullback

$$
\begin{aligned}
& \mathcal{A} \\
& f^{*}(b) \xrightarrow{\phi} b \\
& x \xrightarrow{f} y
\end{aligned}
$$

Grothendieck Fibrations

reindexing functor

$$
P^{-1} y \xrightarrow{f^{*}} P^{-1} x
$$

Fibrations

2-category Fib:

- objects: fibrations $P: \mathcal{A} \rightarrow \mathcal{X}$
- 1-morphisms: commuting square, ϕ_{t} preserves cartesian morphisms

$$
\begin{array}{lll}
\mathcal{A} \xrightarrow{\phi_{t}} & \mathcal{B} \\
P \downarrow \\
& \downarrow_{\phi_{b}} & \mathcal{Y}
\end{array}
$$

- 2-morphisms: suitable natural transformations

Example: Graphs

Let Grph denote the category of directed multi-graphs, each represented by a function $E \rightarrow V \times V$. Define the vertex functor

$$
\text { Vert: Grph } \rightarrow \text { Set }
$$

by sending a graph to its set of vertices, and a map of graphs to its vertex component. Vert is a fibration.

Example: Graphs

Example: Graphs

The Grothendieck Construction

Given

$$
F: \mathcal{X}^{\mathrm{op}} \rightarrow \text { Cat }
$$

we define $\int F$ to have

- objects (x, a), where $x \in \mathcal{X}$, $a \in F(x)$
- maps
$(f, g):(x, a) \rightarrow\left(x^{\prime}, a^{\prime}\right)$
where $f: x \rightarrow x^{\prime}$ and
$g: a \rightarrow F f\left(a^{\prime}\right)$

The Grothendieck Construction

Given

$$
F: \mathcal{X}^{\mathrm{op}} \rightarrow \text { Cat }
$$

we define $\int F$ to have
For $F: \mathcal{X}^{\mathrm{op}} \rightarrow$ Cat, $\int F$ is naturally fibred over \mathcal{X} :

- objects (x, a), where $x \in \mathcal{X}$, $a \in F(x)$
- maps
$(f, g):(x, a) \rightarrow\left(x^{\prime}, a^{\prime}\right)$
where $f: x \rightarrow x^{\prime}$ and
$g: a \rightarrow F f\left(a^{\prime}\right)$

2-functor $\int:$ ICat \rightarrow Fib

2-functor $\int:$ ICat \rightarrow Fib

2-Equivalence

Theorem
The Grothendieck construction gives a 2-equivalence:
ICat \cong Fib

Example: Graphs

The fibration

$$
\text { Vert: Grph } \rightarrow \text { Set }
$$

corresponds to the indexed category

$$
\text { Grph_ } \text { Set }^{\mathrm{op}} \rightarrow \text { Cat }
$$

where Grph_{X} is the category where

- the objects are graphs with fixed vertex set X
- the morphisms are map of graphs which fix the vertices.

Fixed-base Indexed Categories

2-category $\operatorname{ICat}(\mathcal{X})$:

- objects: (pseudo)functors $F: \mathcal{X}^{\mathrm{op}} \rightarrow$ Cat
- 1-morphisms:

- 2-morphisms: suitable modifications

Fixed-base Fibrations

2-category $\operatorname{Fib}(\mathcal{X})$:

- object
$P: \mathcal{A} \rightarrow \mathcal{X}$
- 1-morphism

- 2-morphisms: suitable natural transformations

2-Equivalence for Fixed-base

Theorem

For a category \mathcal{X}, the Grothendieck construction gives a 2-equivalence:

$$
\operatorname{ICat}(\mathcal{X}) \cong \operatorname{Fib}(\mathcal{X})
$$

Fibre-wise Monoidal Indexed Categories

Definition 1

A fibre-wise monoidal indexed category is a pseudofunctor $F: \mathcal{X}^{\mathrm{op}} \rightarrow$ MonCat $_{s}$. Let f MonICat (\mathcal{X}) denote the 2-category of fibre-wise monoidal indexed categories

Fibre-wise Monoidal Fibrations

Definition 2

A (fibre-wise) monoidal fibration is

- fibration $P: \mathcal{A} \rightarrow \mathcal{X}$
- the fibres \mathcal{A}_{x} are monoidal
- the reindexing functors are monoidal
Let $f \operatorname{MonFib}(\mathcal{X})$ denote the 2-category of fibre-wise monoidal fibrations.

Fibre-wise Monoidal Grothendieck Construction

Theorem (Vasilakopoulou, M)
The Grothendieck construction lifts to a 2-equivalence:

$$
f \operatorname{MonFib}(\mathcal{X}) \simeq f \operatorname{MonICat}(\mathcal{X})
$$

Global Monoidal Indexed Categories

Definition 3

A (global) monoidal indexed category is

- an indexed category $F: \mathcal{X}^{\text {op }} \rightarrow$ Cat
- \mathcal{X} is monoidal
- F is lax monoidal $(F, \phi):\left(\mathcal{X}^{\text {op }}, \otimes\right) \rightarrow($ Cat, $\times)$

Let g MonlCat denote the 2-category of global monoidal indexed categories.

Global Monoidal Fibrations

Definition 4

A (global) monoidal fibration

 is a fibration $P: \mathcal{A} \rightarrow \mathcal{X}$- \mathcal{A} and \mathcal{X} are monoidal
- P is a strict monoidal functor
- $\otimes_{\mathcal{A}}$ preserves cartesian liftings.
Let $g \operatorname{MonFib}(\mathcal{X})$ denote the 2-category of global monoidal fibrations.

Global Monoidal Grothendieck Construction

Theorem (Vasilakopoulou, M)
The Grothendieck construction lifts to an equivalence:

$$
g \operatorname{MonFib}(\mathcal{X}) \simeq g \operatorname{MonlCat}(\mathcal{X})
$$

Monoidal structure on the total category

Given a lax monoidal functor

$$
\begin{gathered}
(F, \phi):\left(\mathcal{X}^{\mathrm{op}}, \otimes\right) \rightarrow(\mathrm{Cat}, \times) \\
\phi: F x \times F y \rightarrow F(x \otimes y)
\end{gathered}
$$

$$
(x, a) \otimes(y, b)=
$$

Monoidal structure on the total category

Given a lax monoidal functor

$$
\begin{gathered}
(F, \phi):\left(\mathcal{X}^{\mathrm{op}}, \otimes\right) \rightarrow(\mathrm{Cat}, \times) \\
\phi: F x \times F y \rightarrow F(x \otimes y) \\
(x, a) \otimes(y, b)=(x \otimes y
\end{gathered}
$$

Monoidal structure on the total category

Given a lax monoidal functor

$$
\begin{gathered}
(F, \phi):\left(\mathcal{X}^{\mathrm{op}}, \otimes\right) \rightarrow(\mathrm{Cat}, \times) \\
\phi: F x \times F y \rightarrow F(x \otimes y) \\
(x, a) \otimes(y, b)=\left(x \otimes y, \phi_{x, y}(a, b)\right)
\end{gathered}
$$

Cartesian Case

Theorem (Vasilakopoulou, M)

If \mathcal{X} is a cartesian monoidal category, then

Dually, if \mathcal{X} is cocartesian, then
$g \operatorname{MonOpFib}(\mathcal{X}) \xrightarrow{\simeq} g \operatorname{MonOpICat}(\mathcal{X})$

$f \operatorname{MonOpFib}(\mathcal{X}) \xrightarrow{\simeq} f \operatorname{MonOpICat}(\mathcal{X})$

g MonICat $(\mathcal{X}) \rightarrow f$ MonICat (\mathcal{X})

Given $(F, \phi):(X, \times)^{\text {op }} \rightarrow($ Cat, $\times)$ define $\otimes_{x}: F_{x} \times F_{x} \rightarrow F_{x}$ by

f MonICat $(\mathcal{X}) \rightarrow g$ MonICat (\mathcal{X})

Given $F: X^{\mathrm{op}} \rightarrow$ MonCat define $\phi_{x, y}: F x \times F y \rightarrow F(x \times y)$ by

Example: Graphs

(cocartesian) monoidal structure on $\operatorname{Grph}(X)$ given by

$$
\left(f: E \rightarrow X^{2}\right)+x\left(f^{\prime}: E^{\prime} \rightarrow X^{2}\right)=\left(\left\langle f, f^{\prime}\right\rangle: E+E^{\prime} \rightarrow X^{2}\right)
$$

$$
\bullet \longleftarrow \bullet \quad \bullet \longrightarrow \bullet
$$

Example: Graphs

(cocartesian) monoidal structure on $\operatorname{Grph}(X)$ given by

$$
\left(f: E \rightarrow X^{2}\right)+x\left(f^{\prime}: E^{\prime} \rightarrow X^{2}\right)=\left(\left\langle f, f^{\prime}\right\rangle: E+E^{\prime} \rightarrow X^{2}\right)
$$

Then we can define a lax monoidal structure on
$\operatorname{Grph}(-)$: Set \rightarrow Cat by

$$
\operatorname{Grph}(X) \times \operatorname{Grph}(\underbrace{\operatorname{Grph}}_{i_{* \times j_{*}}^{(Y)} \operatorname{Grph}(X}+Y) \times \underset{\operatorname{Grph}(X+Y)}{+} \operatorname{Grph}(X+Y)
$$

Constructing network operads

Graphs can be combined to create bigger graphs by identifying some of the vertices

We choose to examine these as combinations of a few simpler operations

We want to construct an operad that captures these operations

Types of networks as functors

Simple graphs, as a symmetric lax monoidal functor:
$(S G, \sqcup):($ FinBij,+$) \rightarrow($ Mon,$\times)$

- $\operatorname{SG}(n)$ simple graphs with vertex set n

Types of networks as functors

Simple graphs, as a symmetric lax monoidal functor:

$$
(S G, \sqcup):(\text { FinBij },+) \rightarrow(\text { Mon }, \times)
$$

- $\operatorname{SG}(n)$ simple graphs with vertex set n
- symmetric group S_{n} acts on $\operatorname{SG}(n)$ by permuting vertices

Types of networks as functors

Simple graphs, as a symmetric lax monoidal functor:

$$
(S G, \sqcup):(\text { FinBij },+) \rightarrow(\text { Mon }, \times)
$$

- $\operatorname{SG}(n)$ simple graphs with vertex set n
- symmetric group S_{n} acts on $\operatorname{SG}(n)$ by permuting vertices
- monoid operation $\cup: \mathrm{SG}(n) \times \mathrm{SG}(n) \rightarrow \mathrm{SG}(n)$ given by "overlaying" two graphs

Types of networks as functors

Simple graphs, as a symmetric lax monoidal functor:

$$
(S G, \sqcup):(\text { FinBij },+) \rightarrow(\text { Mon }, \times)
$$

- $\operatorname{SG}(n)$ simple graphs with vertex set n
- symmetric group S_{n} acts on $\operatorname{SG}(n)$ by permuting vertices
- monoid operation $\cup: \mathrm{SG}(n) \times \mathrm{SG}(n) \rightarrow \mathrm{SG}(n)$ given by "overlaying" two graphs
- lax structure $\sqcup: \operatorname{SG}(n) \times \operatorname{SG}(m) \rightarrow \mathrm{SG}(n+m)$

Types of networks as functors

A network model is a symmetric lax monoidal functor

$$
(F, \phi):(\text { FinBij },+) \rightarrow(\text { Mon }, \times) \hookrightarrow(\text { Cat }, \times)
$$

Examples:

- Multigraphs
- Directed Graphs
- Partitions
- Graphs with colored vertices
- Petri Nets
- Graphs with edges weighted by a monoid

NetMod $\xrightarrow{\int}$ SymMonCat $\xrightarrow{\text { op }}$ Operad

The critical difference between ICat and ICat (\mathcal{X})

products in ICat:

$$
\begin{gathered}
F: \mathcal{X}^{\mathrm{op}} \rightarrow \text { Cat } \\
G: \mathcal{Y}^{\mathrm{op}} \rightarrow \text { Cat } \\
\mathcal{X}^{\mathrm{op}} \times \mathcal{Y}^{\mathrm{op}} \xrightarrow{F \times G} \mathrm{Cat} \times \mathrm{Cat} \xrightarrow{\times} \mathrm{Cat}
\end{gathered}
$$

The critical difference between ICat and ICat (\mathcal{X})

products in ICat:

$$
\begin{gathered}
F: \mathcal{X}^{\mathrm{op}} \rightarrow \text { Cat } \\
G: \mathcal{Y}^{\mathrm{op}} \rightarrow \text { Cat } \\
\mathcal{X}^{\mathrm{op}} \times \mathcal{Y}^{\mathrm{op}} \xrightarrow{F \times G} \mathrm{Cat} \times \mathrm{Cat} \xrightarrow{\times} \mathrm{Cat}
\end{gathered}
$$

products in ICat(X):

$$
\begin{gathered}
F, G: \mathcal{X}^{\mathrm{op}} \rightarrow \text { Cat } \\
\mathcal{X}^{\mathrm{op}} \xrightarrow{\Delta} \mathcal{X}^{\mathrm{op}} \times \mathcal{X}^{\mathrm{op}} \xrightarrow{F \times G} \mathrm{Cat} \times \mathrm{Cat} \xrightarrow{\times} \mathrm{Cat}
\end{gathered}
$$

The proof

We wrote the definitions so that

- $f \operatorname{MonICat}(\mathcal{X}) \cong \operatorname{PsMon}(\operatorname{ICat}(\mathcal{X}))$.
- $f \operatorname{MonFib}(\mathcal{X}) \cong \operatorname{PsMon}(\operatorname{Fib}(\mathcal{X}))$.
- g MonlCat \cong PsMon(ICat).
- g MonFib $\cong \operatorname{PsMon(Fib)}$.

If $A \cong B$, then $\operatorname{PsMon}(A, \times) \cong \operatorname{PsMon}(B, \times)$.

Braided and Symmetric

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to equivalences:

$$
\begin{aligned}
g \operatorname{BrMonFib}(\mathcal{X}) & \simeq g \operatorname{BrMonI\operatorname {Cat}(\mathcal {X})} \\
f \operatorname{BrMonFib}(\mathcal{X}) & \simeq f \operatorname{BrMonICat}(\mathcal{X})
\end{aligned}
$$

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to an equivalence:
$g \operatorname{SymMonFib}(\mathcal{X}) \simeq g \operatorname{SymMonICat}(\mathcal{X})$
$f \operatorname{SymMonFib}(\mathcal{X}) \simeq f \operatorname{SymMonICat}(\mathcal{X})$

John Baez, John Foley, Joseph Moeller, and Blake Pollard. Network models.
arXiv:1711.00037 [math.CT], 2017.
圊 Joe Moeller and Christina Vasilakopoulou. Monoidal Grothendieck construction. arXiv:1809.00272 [math.CT], 2019.

量 Michael Shulman.
Framed bicategories and monoidal fibrations.
Theory Appl. Categ., 20:No. 18, 650-738, 2008.

