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Motivation

Given Given
Mod: Ring®® — Cat F: X — Cat
we defined Mod,; to have we define f]-" to have
» objects (k, M), where » objects (x, a), where x € X,
M € Mody ac .F(X)
» maps > maps
(f,g): (k,M) — (K', M) (f,g): (x,a) = (¥, )
where f: k — k' and where f: x — x’ and

g: M — (M) g:a— Ff(d)



Indexed Categories

2-category ICat:

» objects: (pseudo)functors
F: X — Cat

» 1-morphisms: (pseudo)natural transformations
X°P

\F

¢‘/ Ja = Cat

yor ~ €

» 2-morphisms: suitable modifications



Example: Rings and Modules

A ring homomorphism f: k — k' induces a functor
f*: Mody,s — Mod
given by *(M) = M but with the k-action defined by
r.m=f(r).m

for r € k, and

(&) =&
This gives a functor Mod: Ring®® — Cat sending a ring to its
category of modules and a morphism f to Mods = f*.
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Example: semidirect product

Given an action of a group G on a group H
A: G — Aut(H)
you can think of it as a functor of the form

G A Grp < Cat

* = H
[A has:
> a single object: (x,x*)
» morphisms: (g, h) with g € G, he H
> (g.h)o(g',h)=(gog’ hog.h')
So fA = H x G, the semidirect product!



2-functor [: ICat — Cat
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2-functor [: ICat — Cat

-l}/o — .g\/ : :
<7

P it remembers all the objects and maps in each Fx

» it throws in extra maps representing what the functors Ff do
> it forgets which maps came from categories or functors

> We can do better!
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Grothendieck Fibrations

pullback



Grothendieck Fibrations

reindexing functor

P_ly —>* P—1x



Fibrations

2-category Fib:
» objects: fibrations P: A — X

» 1-morphisms: commuting square, ¢; preserves cartesian
morphisms

ALB

Pl la
=Y

» 2-morphisms: suitable natural transformations



Example: Graphs

Let Grph denote the category of directed multi-graphs, each
represented by a function E — V' x V. Define the vertex functor

Vert: Grph — Set

by sending a graph to its set of vertices, and a map of graphs to its
vertex component. Vert is a fibration.



Example: Graphs

Grph

Vertl

Set



Example: Graphs

Grph Q——E
1 l
Vert XXX —YXxY
fxf

Set X ——Y



The Grothendieck Construction

Given
F: X°°? = Cat

we define [F to have
> objects (x, a), where x € X,
ae F(x)
» maps

(f,g): (x,a) = (X, )
where f: x — x' and
g:a— Ff(d)



The Grothendieck Construction

Given
F: X — Cat _
For F: X°P — Cat, [F is
we define [F to have naturally fibred over X
> objects (x, a), where x € X, Pe: [F— X
ae F(x)
> (x,a) — x
maps (F k) — f

(f.g): (x,a) = (¥, a)
where f: x — x’ and
g:a— Ff(d)
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2-functor [: ICat — Fib




2-Equivalence

Theorem

The Grothendieck construction gives a 2-equivalence:

ICat = Fib



Example: Graphs

The fibration
Vert: Grph — Set

corresponds to the indexed category
Grph_: Set°® — Cat

where Grphy is the category where
> the objects are graphs with fixed vertex set X
» the morphisms are map of graphs which fix the vertices.



Fixed-base Indexed Categories

2-category ICat(X):
» objects: (pseudo)functors F: X°P — Cat

» 1-morphisms:
F
T
X |Ja Cat

~_ 7
G

» 2-morphisms: suitable modifications



Fixed-base Fibrations

2-category Fib(X):
> object
PA>X

» 1-morphism

» 2-morphisms: suitable natural transformations



2-Equivalence for Fixed-base

Theorem

For a category X, the Grothendieck construction gives a
2-equivalence:

ICat(X) = Fib(X)



Fibre-wise Monoidal Indexed Categories

Definition 1

A fibre-wise monoidal indexed category is a pseudofunctor
F: X° — MonCats. Let fMonlCat(X') denote the 2-category of
fibre-wise monoidal indexed categories

7N 4
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Fibre-wise Monoidal Fibrations

Definition 2
A (fibre-wise) monoidal
fibration is

» fibration P: A — X

» the fibres A, are monoidal

» the reindexing functors are J p
monoidal
Let fMonFib(X) denote the A

2-category of fibre-wise monoidal
fibrations.



Fibre-wise Monoidal Grothendieck Construction

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to a 2-equivalence:

fMonFib(X) ~ fMonlICat(X)



Global Monoidal Indexed Categories

Definition 3
A (global) monoidal indexed category is
» an indexed category F: X°P — Cat
> X is monoidal
» F is lax monoidal (F,¢): (X°P,®) — (Cat, x)
Let gMonlCat denote the 2-category of global monoidal indexed

categories.
° @
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Global Monoidal Fibrations

Definition 4
A (global) monoidal fibration
is a fibration P: A - X

» A and X are monoidal

» P is a strict monoidal
functor

> ® 4 preserves cartesian
liftings.
Let gMonFib(X’) denote the

2-category of global monoidal
fibrations.




Global Monoidal Grothendieck Construction

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to an equivalence:

gMonFib(X) ~ gMonlCat(X)



Monoidal structure on the total category
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¢ Fx x Fy - F(x®y)

(x,a) @ (y,b) =
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Monoidal structure on the total category

Given a lax monoidal functor
(F,9): (X°P,®) — (Cat, x)

¢ Fx x Fy - F(x®y)

(x,a) @ (y,b) = (x @y, ¢xy(a, b))



Cartesian Case
Theorem (Vasilakopoulou, M)
If X is a cartesian monoidal category, then

gMonFib(X) —=— gMonlCat(X)

| I

fMonFib(X) —=— fMonlCat(X)
Dually, if X is cocartesian, then

gMonOpFib(X) —— gMonOplCat(X)

| !

fMonOpFib(X) —=— fMonOplCat(X)



gMonlCat(X') — fMonlCat(X)

Given (F,¢): (X, x)°" — (Cat, x)
define ®,: Fx x Fx — Fx by

Fx x Fx ©x Fx

¢x,x A

F(x x x)




fMonlCat(X') — gMonlCat(X)

Given F: X°P — MonCat
define ¢, : Fx x Fy — F(x x y) by

Fx x Fy Proy

Fﬂm %

F(x xy) x F(x x y)

F(x xy)



Example: Graphs
(cocartesian) monoidal structure on Grph(X) given by
(f: E—= X)) +x(f: E' = X?)=((f,f): E+ E — X?)
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Example: Graphs
(cocartesian) monoidal structure on Grph(X) given by

(f: E—= X)) +x(f: E' = X?)=((f,f): E+ E — X?)

e —— o .%.p .m.p
~_
\ + _ \
[} [ [ ]

Then we can define a lax monoidal structure on
Grph(—): Set — Cat by

Grph(X) x Grph(Y ha Grph(X + Y)

Grph(X + Y) x Grph(X + Y)



Constructing network operads

Graphs can be combined to create bigger graphs by identifying
some of the vertices



We choose to examine these as combinations of a few simpler
operations

L L



We want to construct an operad that captures these operations

L L
L1
@/%@@_@E\@f@\ca\thg" —
3 |2 = 3 = ® O
(00 eo006] [00 w0 | ©
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Types of networks as functors

Simple graphs, as a symmetric lax monoidal functor:

(SG,U): (FinBij, +) — (Mon, x)

» SG(n) simple graphs with vertex set n

» symmetric group S, acts on SG(n) by permuting vertices

» monoid operation U: SG(n) x SG(n) — SG(n) given by
“overlaying” two graphs

» lax structure LI: SG(n) x SG(m) — SG(n+ m)



Types of networks as functors

A network model is a symmetric lax monoidal functor

(F,¢): (FinBij,+) — (Mon, x) < (Cat, x)

Examples:

>

vVvyYyyvyy

Multigraphs

Directed Graphs

Partitions

Graphs with colored vertices

Petri Nets

Graphs with edges weighted by a monoid



NetMod L SymMonCat 22, Operad
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The critical difference between ICat and ICat(X)

products in ICat:

F: X°" — Cat
G: Y — Cat

XOP x Yop X6, Cat x Cat = Cat



The critical difference between ICat and ICat(X)

products in ICat:

F: X°" — Cat
G: VP — Cat

X°P x Y°p X6, Cat x Cat = Cat

products in 1Cat(X):
F,G: X°° — Cat

X°P A> XOP x X°P % Cat x Cat = Cat



The proof

We wrote the definitions so that
» fMonlCat(X') = PsMon(ICat(X)).
» fMonFib(X') = PsMon(Fib(X)).
» gMonlCat = PsMon(ICat).
» gMonFib = PsMon(Fib).
If A= B, then PsMon(A, x) = PsMon(B, x).



Braided and Symmetric

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to equivalences:
gBrMonFib(X) ~ gBrMonlCat(X)

fBrMonFib(X) ~ fBrMonlCat(X)

Theorem (Vasilakopoulou, M)

The Grothendieck construction lifts to an equivalence:
gSymMonFib(X) ~ gSymMonlCat(X)

fSymMonFib(X') ~ fSymMonlCat(X)
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